If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-125=0
a = 15; b = 0; c = -125;
Δ = b2-4ac
Δ = 02-4·15·(-125)
Δ = 7500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7500}=\sqrt{2500*3}=\sqrt{2500}*\sqrt{3}=50\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-50\sqrt{3}}{2*15}=\frac{0-50\sqrt{3}}{30} =-\frac{50\sqrt{3}}{30} =-\frac{5\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+50\sqrt{3}}{2*15}=\frac{0+50\sqrt{3}}{30} =\frac{50\sqrt{3}}{30} =\frac{5\sqrt{3}}{3} $
| 8(a+2)+2(2+3a)=8, | | 2t-2=19t | | 10+5x/2=25 | | 4x+1/2x+2=128 | | 27=x•(x-3) | | 27=x×(x-3) | | 5(7x+7)+3x-8=38x+36 | | 2(3x+2)=32 | | 45/5=x-32/9 | | 400x^2-x=0 | | 6(u+1)-9=4(u-1)+2 | | 3x-11=65 | | 50=5x^2-120x+750 | | 4+y/3=-5 | | 10x+3+12x=-41 | | 3+5/x=0 | | 117=15(120)+b | | 0.4(2x+0.3)=0.3333333333(6x−7.2) | | -7x+7+12x=5x+7. | | (7x+6)+(6x-7)+90=180 | | 16/3=x/9 | | 2x/4x+1=-1/2x | | -1/2x+x^2=5 | | .5r-3=3(4-1.5r | | g(2)=-4+7(2) | | 229x-2=2119 | | 6y-14=-(y-2) | | (-1/2x)+x^2=5 | | 4(x−6)+2=6x−8 | | 12n-6=4+10n | | 3(3x-6)=18+9x | | .5r-3=(4-1.5r) |